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FOREWORD

The U.S. Army Research Institute for the Behavioral and Social Sciences (ARI) conducts
Training, Leader Development, and Soldier research for the Army. Largely, the ARI mission
involves taking proven methods in the behavioral sciences and applying them to significant
Army problems. In addition, a smaller portion of the ARI effort involves attempts to develop
new advanced methods to meet future Army requirements. This report describes work of the
latter kind; an attempt was made to apply intelligent tutor technology, which has lately become
practicable for training procedural tasks in well-defined domains, to battle command reasoning, a
difficult cognitive task. This report describes a Phase II Small Business Innovation Research
Program (SBIR) effort that involves developing an intelligent tutoring system for high-level
battle command reasoning skills. Research of this nature tends to be higher risk, and this project
was no exception. At its conclusion, ARI researchers concluded that although substantial
advances have been made in computerized training systems during the last decade, automated
tutoring of battle command reasoning is still beyond the current state of the technology and is not
likely to be a feasible solution to Army training requirements in the near future. Further, it raised
questions about whether the potential value of the future technology justifies expending Army
resources in development efforts. Nonetheless, the failed effort to develop a workable prototype
had some value. It showed some of the capabilities and limitations of tutorial dialog systems. It
advanced the methods for developing intelligent tutoring systems in domains that are
appropriate. Further, when briefed to training developers for Future Combat Systems it provided
them with a realistic assessment of future capabilities upon which to base their design.

This project is part of ARI’s Future Battlefield Conditions (FBC) team efforts to enhance
Soldier preparedness through development of training and evaluation methods to meet future
battlefield conditions. This report represents efforts for Work Package 211, Techniques and
Tools for Command, Control, Communications, Computer, Intelligence, Surveillance, and
Reconnaissance (C4ISR) Training of Future Brigade Combat Team Commanders and Staffs

(FUTURETRAIN).

Initial work in the project was presented at the 2002 Annual Meeting of
Interservice/Industry Training, Simulation, and Education Conference (/ITSEC). At the
conclusion of the project, results were presented to representatives of the Armor School
responsible for developing and conducting training and to the training developers for Future
Combat Systems acquisition program.

Acting Technical Director
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A DIALOG-BASED INTELLIGENT TUTORING SYSTEM FOR PRACTICING BATTLE
COMMAND REASONING

EXECUTIVE SUMMARY

Research Requirement:

Expert thinking strategies, such as those exhibited by successful Army commanders, are
often well understood conceptually but not applied routinely during realistic tactical problem
solving by less experienced commanders. The goal of this effort was to develop an intelligent
tutoring system (ITS) for interactive self-training of thinking skills, such as battle command
reasoning, within a deliberate practice framework to promote practical application.

Procedure:

The approach was to couple two technologies used successfully elsewhere to address
different aspects of the current research requirement, develop an intelligent tutoring system for
battle command reasoning referred to here as “Automated Tutoring Environment for Command”
(ATEC). The ATEC ITS adapted the dialog management capability from AutoTutor, a dialog-
based tutor developed by Graesser and colleagues at the University of Memphis. It integrated
this dialog management technology with a cognitive model-based instructional agent, a cognitive
agent framework called iGEN by CHI Systems. The agent framework attempted to replicate the
knowledge and role of the human mentor for such tactical instructional programs as “Think Like
A Commander” (TLAC).

The procedure for developing ATEC ITS included the following elements:

» Developing a pedagogical approach, functional architecture, and software architecture for
integrating AutoTutor dialog management capabilities into the initial iGEN-based ATEC
system.

e Conducting analyses on mentoring discussions in the context of TLAC vignettes and
developing the questions and expected answers for the ATEC mentor model.

¢ Evolving the initial user interface into a multi-user web environment that has a complete

and self-contained application (with instructions and background materials).

Developing and integrating dialog management components into the ATEC system.

Enhancing iGEN to include capabilities for modeling tutorial dialog.

Developing a complete virtual mentor model.

Developing a performance assessment approach and incorporating it into the mentor

model.

e Developing tools to facilitate testing and refinement of the dialog mechanisms.

vii



Findings:

The findings are based on the approach used to develop and refine a prototype ATEC
system using one tactical vignette from the TLAC training program. The ATEC program was
developed as a web-based application that users can log onto from any computer with an Internet
connection and a browser (with Flash and Java). Introductory material was included as well as
links to relevant documents, making it a self-contained application. The iGEN technology
served as the reasoning engine and core computational architecture for ATEC. It handled the
domain knowledge and reasoning facilities associated with the vignette, the student model, and
performance assessment components. The language processor (including syntactic parser and
speech act classifier) and statistically grounded conceptual comparison components were
derivatives of the AutoTutor system. The curriculum script and dialog management processes of
AutoTutor were integrated into the iGEN mentor model.

The ATEC system was designed to present a battlefield situation and then initiate a
dialog between a virtual mentor (instructional agent) and a student in a collaborative discussion
of the tactical situation. As designed, the virtual mentor poses questions, evaluates student
responses, determines the sequence of questions, and ultimately assesses performance on the
basis of the specificity of questioning and the depth of probing and hinting that is needed to
adequately answer the questions. The dialog is organized around the eight themes in TLAC.
For each theme, there is a general question meant to start discussion of that aspect of the
problem. Associated with each general question, there are anticipated good answers (called
expectations) based on reasonable approaches to the problem posed. The virtual mentor assesses
the student’s response in relation to the possible good answers using a statistical comparison
algorithm. There is also a set of progressively more specific questions for the virtual mentor to
ask to prompt the student into thinking about any aspect of the theme that is not discussed in

response to the initial question.

A principal finding is that severe technical challenges remain in developing a
conversation-based tutoring system to assist military personnel in acquiring and practicing
flexible tactical reasoning strategies in realistic battle situations. The goal of using open-ended,
non-leading questions to stimulate broad consideration of all relevant aspects of a vignette made
it difficult to evaluate student inputs accurately, leading to unnaturalness in the tutorial dialog.
Additional research is therefore warranted to improve the evaluation algorithm and dialog
mechanisms. Furthermore, additional effort is needed to make the web implementation of the

system more robust and efficient.
Utilization of Findings:

Overall, the results of the ATEC development effort underscore areas requiring additional
research and development in tutorial dialog systems to fully meet the research requirement, an
intelligent tutoring system (ITS) for higher-order thinking skills such as battle command

reasoning.
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From the outset of this innovative research effort, there was uncertainty as to the
feasibility of building a natural language dialog system for developing thinking skills.
Computer-based natural language dialog systems are feasible for some classes of tutoring
environments, namely those in which domain knowledge is qualitative and the shared knowledge
(common ground) between the tutor and learner is low to moderate rather than high. Some
aspects of tactical thinking require high precision and that student and tutor begin with at least a
moderate amount of shared knowledge about the situation; thus ATEC was a borderline
candidate for tutorial dialog, and the dialog was not always appropriate to the situation. The
most promising applications of tutorial dialog systems are to conceptual domains in which the
goal is to impart knowledge.

In addition, incremental changes were identified that could potentially improve ATEC.
These include: changing or improving the tutor’s conceptual pattern matching algorithm, refining
the dialog management strategies and question hierarchy, and re-implementing the system for
efficiency as a web application. However, it is an open question whether these changes would be
sufficient for the type of tutoring problem addressed.

In sum, the value of the ATEC development effort is twofold. Lessons learned on
technical challenges and changes required should be useful in future efforts on higher-order
thinking skills, such as battle command reasoning. Technologies developed, including
refinements to the tutoring architecture and underlying pedagogical approach, should readily
apply to other training problems more amenable to conversational dialog.
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A DIALOG-BASED INTELLIGENT TUTORING SYSTEM
FOR PRACTICING BATTLE COMMAND REASONING

Introduction

The goal of this Phase II Small Business Innovative Research (SBIR') effort was to
develop an Intelligent Tutoring System (ITS) for interactive self-training of thinking skills, such
as battle command reasoning, within a deliberate practice framework. In an attempt to achieve
this goal, a dialog-based intelligent tutoring system was developed called “Automated Tutoring
Environment for Command” (ATEC). This system involves the use of a dialog management
capability based on the AutoTutor system, coupled with an iGEN-based instructional agent that
replicates the knowledge and role of a human tutor, and a web-based personalized interface that
manages the interaction between instructional agent and student.

The ATEC operates by first presenting a battlefield situation in a brief video on the
ATEC interface. The system then initiates a text-based dialog between a virtual mentor
(instructional agent) and a student as they collaboratively discuss the situation. The virtual
mentor (a) poses questions, (b) evaluates student responses, (c) determines the sequence of
questions, and (d) ultimately assesses performance on the basis of the specificity of questioning
and the depth of probing and hinting that is needed to encourage the learner to adequately answer
the questions. The system includes various natural language processing capabilities, including
information extraction and dialog management.

Background

Training Needs in Battle Command Reasoning. The Army Research Institute for the
Behavioral and Social Sciences (ARI) has developed training and instructional materials in a
program called “Think Like A Commander” (TLAC). The TLAC program coaches command
reasoning through adaptive thinking exercises using battlefield situations (Ross & Lussier, 1999;
Lussier, Ross, & Mayes, 2000). The TLAC program deals with battlefield thinking habits that
are characteristic of expert tactical thinkers, but are often absent during realistic tactical problem
solving of less experienced commanders even though they are understood conceptually at a
theoretical level. Schoolhouse learning involves primarily declarative knowledge about
command principles and tactics, with training in task-specific procedures (in declarative form)
based on these principles and tactics. Full-scale exercises and real command situations require
integrated and ingrained expertise to include: determining what facts and principles are
applicable to the problem, retrieving them, mapping the situation to the appropriate parts of the
principles, and drawing inferences about the problem situation and its solution (e.g., VanLehn,
1996; Zachary & Ryder, 1997).

In essence, an intelligent knowledgeable coach is needed who can guide the user in
applying principles and tactics to real-world problems. At first this process is slow and effortful,
and the principles are applied one at a time (e.g., VanLehn, 1996; Zachary & Ryder, 1997).
However, real problem situations require coordinated application of multiple facts and
principles. Repeated real-time practice allows for “proceduralization” and chunking of skills

! Acronyms are defined in Appendix A.



(e.g., deriving domain-specific problem-solving strategies, integrating separate pieces of
declarative knowledge) and development of automaticity of component skills (see Fisk &
Rogers, 1992). It takes about 10 years to develop truly expert levels of performance and
understanding (Ericsson, Krampe & Tesch-Romer, 1993), such as Klein’s expert level of
recognition-primed decision-making (Klein, 1989). This sophisticated expertise allows the
appropriate quick interpretation and course of action to be derived directly (and almost
instantaneously) from a recognition of key problem-instance features. As described below,
TLAC addresses the transition from schoolhouse learning to adaptive expertise by providing

deliberate practice opportunities.

Think Like A Commander Program. The TLAC program has been used with Brigade
Command designees attending the Schoo! for Command Preparation of the Command and
General Staff College (CGSC) at Fort Leavenworth, KS (U.S. Army Research Institute, 2001).

It is also currently used in the Armor Captain’s Career Course at Fort Knox, KY (Shadrick &
Lussier, 2002; Lussier, Shadrick & Prevou, 2003). In its current form, TLAC presents tactical
situations (called vignettes) as short movies in a classroom setting. Following the presentation of
a vignette, there is a classroom discussion of the vignette led by an instructor acting as tutor or
mentor. The instructor begins by asking general questions to stimulate thinking, and then asks
increasingly more directed questions to probe for themes that have not been addressed. The
discussion is organized around eight themes that underlie common patterns of expert tactical

thinking:

Keep focus on mission and higher commander’s intent.
Model a thinking enemy.

Consider effects of terrain.

Use all assets available.

Consider timing.

See the bigger picture.

Visualize the battlefield.

Consider the contingencies and remain flexible.

PNAN D WN

A set of questions or considerations are distinctly tailored to each theme. A number of TLAC
vignettes have been developed and used across a mix of tactical situations.

Phase I ATEC Approach

In Phase I of this research, we proposed to develop an interactive practice environment
using instructional agent technology (using CHI Systems’ iGEN cognitive agent framework), an
approach we had used successfully in previous research. Our subsequent assessment indicated
that our original concept of an action-based interactive practice environment would not meet the
requirements for interactive self-training of thinking skills in the manner that would
accommodate the TLAC program. Instead, we determined that incorporation of a dialog
management capability into the ATEC concept would provide the capabilities required to
achieve the functionality needed. Moreover, a dialog management facility appeared to be
technically feasible at this point in research and development, although it did push the state-of-




the-art. We developed a revised architecture and operational concept that incorporated natural
language processing and tutorial dialog.

The ATEC, like the TLAC training, begins with the viewing of a vignette. After the
vignette had been viewed, the instructional agent would conduct a dialog probing the student
understanding of the situation and approach to handling it. A conceptual prototype was
developed that demonstrated the planned Phase II architecture. The conceptual prototype
incorporated an initial version of an instructional agent that focused on one theme from one
vignette, an initial version of the user interface, and a simple placeholder for the dialog
management capability envisioned for Phase II development.

The instructional agent maintained a hierarchical list of questions that should be asked to
evaluate what knowledge the student had demonstrated. Parsed student responses were analyzed
to evaluate each specific response and to update a tree-like representation of student
performance, which was maintained as a student model. The student model matched the
structure of the question tree and allowed the instructional agent to monitor the student’s
responses to each particular question by populating the branch of the tree that specifically
correlated with the stated question. The instructional agent also maintained a record of which
questions were asked and which questions elicited the matching concepts to use in evaluation. In
conducting the evaluation, the agent compared how far down the tree, or how specific and
leading, the questions had to be asked before the student demonstrated satisfactory understanding
of the relevant concepts. Because the dialog management capability was an addition to the
original Phase I plan, the conceptual prototype implemented a very simple keyword-spotting
algorithm as a placeholder for a full dialog management system planned for Phase II. An initial
version of the user interface subsystem was developed in Phase I. The interface featured a
display map panel where the vignette is displayed, control buttons to play the vignette (and/or re-
play, zoom-in, zoom-out, stop), a ‘talking head’ box where narrator and mentor images appeared
at appropriate times, dialog boxes for mentor output and student input, and buttons that allowed
the student to link to supplementary materials.

Phase II Research Objectives

Building on the Phase I work, there were four research objectives for Phase II, as follows:

1. Develop the dialog/tutoring management system for the ATEC system. This was the key
objective for Phase II since the decision to incorporate a dialog-based approach was made
at the end of Phase I. While all other components of the ATEC architecture were at least
partially implemented in Phase I, the dialog management approach was only approached
in a ‘placeholder’ manner, using a minimal keyword-spotting algorithm. In the Phase II
approach, the development of a suitable natural language-based dialog processor and
manager constituted a major portion of the effort. This objective involved adaptation and
integration of an existing and proven technology into the ATEC system called iGEN, a
cognitive agent software toolkit developed by CHI systems. The additional technology
was the AutoTutor system developed by Graesser and colleagues at the University of

Memphis.



2. Develop domain analysis tools to support semi-automated vignette authoring and
analysis. An initial vignette was to be developed by hand and used to test and develop
the dialog/tutoring management system. Subsequent to the initial vignette development,
authoring tools would be developed to facilitate development of additional vignettes.

3. Implement the instructional management subsystem, based on the instructional model
developed in Phase I. The instructional agent approach used in Phase I needed to be

fleshed out and integrated with the dialog management system.
4. Develop a system to measure the students’ ATEC performance. The rough concept for

evaluating performance from Phase I had to be developed into a full capability in
conjunction with the instructional management system.

Overview of this Report

The next section of this report discusses the component technologies used in this effort,
followed by a description of the ATEC system as it was developed. Subsequent sections
describe the analyses conducted to support development decisions, the enhancements made to
the iGEN agent development system to support integration of dialog management capabilities
with instructional management, and the authoring and testing tools created to support system
development. A final section provides an assessment of ATEC, lessons learned from the
development effort, and an assessment of the state-of-the-art of natural language intelligent

tutoring systems.

Component Technologies

Dialog-b&sed Intelligent Tutoring Systems

The vision of having a computer communicate with users in natural language was
entertained shortly after the computer was invented, but it was not until Weizenbaum’s (1966)
ELIZA program that a reasonably successful conversation system could be explored.
Subsequent efforts at dialog-based tutors include:

1. Collin’s tutoring system on South American geography called SCHOLAR (Collins,
Warnock, & Passafiume, 1975).

2. Woods’ program that syntactically parsed questions and answered user’s queries about
moonrocks (Woods, 1977).

3. Work by Schank and his colleagues in building computer models of natural language
understanding and rudimentary dialog about scripted activities (Lehnert & Ringle, 1982;
Schank, 1986; Schank & Reisbeck, 1982).

4. Winograd’s SHRDLU system that interacted with a user on manipulating simple objects
in a blocks world (Winograd, 1972).

5. A speech recognition system that handles airline reservations, called Hear What I Mean,

(HWIM) (Cohen, Perrault, & Allen, 1982).

Unfortunately, two decades of exploring human-computer dialog systems had a less than
encouraging outcome. By the mid-1980’s, most researchers in artificial intelligence were
convinced that the prospects of building good conversation systems was well beyond the




horizon. This belief was based upon the following: (a) inherent complexities of natural
language processing, (b) the unconstrained, open-ended nature of world knowledge, (c) the lack
of research on lengthy threads of connected discourse, and (d) the time and expertise constraints

in building student models.

The early pessimism about natural language processing and conversational dialog
systems was arguably premature. Because of a sufficient number of technical advances in the
last eight years, researchers are revisiting the vision of building such dialog systems. The field
of computational linguistics has recently produced an impressive array of lexicons, syntactic
parsers, semantic interpretation modules, and dialog analyzers that are capable of rapidly
extracting information from naturalistic text and discourse (Allen, 1995; DARPA, 1995;
Harabagiu, Maiorano, & Pasca, 2002; Jurafsky & Martin, 2000; Manning & Schutze, 1999;
Voorhees, 2001). Lenat’s CYC system represents a large volume of mundane world knowledge
in symbolic forms that can be integrated with a diverse set of processing architectures (Lenat,

1995).

The world knowledge contained in an encyclopedia can be represented statistically in
high dimensional spaces, such as Latent Semantic Analyses (LSA) (Foltz, Gilliam, & Kendall,
2000; Landauer, Foltz, & Laham, 1998). An LSA space (which can be considered a kind of
student model) can be created overnight, a space that produces semantic judgments on whether
two text excerpts are conceptually similar. The representation and processing of connected
discourse is much less mysterious after two decades of research in discourse processing
(Graesser, Gernsbacher, & Goldman, 2003). There are now generic computational modules for
building dialog facilities that attempt to track and manage the beliefs, knowledge, intentions,
goals, and attentional states of agents in two party dialogs (Core, Moore, & Zinn, 2000; Gratch et
al., 2002; Moore & Wiemer-Hastings, 2003; Pellom, Ward, & Pradhan, 2000; Rich & Sidner,
1998; Rickel, Lesh, Rich, Sidner, & Gertner, 2002; Graesser, VanLehn, Rose, Jordan, & Harter,

2001).

Computer-based natural language dialog is particularly feasible in some classes of
tutoring environments. First, the feasibility of tutorial dialog in natural language depends on the
subject matter, the knowledge of the learner, and the sophistication of tutoring strategies. It is
sometimes more feasible when the knowledge domain is qualitative (e.g., verbal reasoning,
open-ended qualitative knowledge) rather than precise (e.g., mathematics, logic). Although
precise domain tutors have been developed (e.g., Heffernan & Koedinger, 1998), the large
number of computational linguistic modules available, as well as the pedagogical opportunities
in natural language dialog, make qualitative domains often preferred (e.g., Graesser, VanLehn,
et al., 2001). But the choice of qualitative versus precise depends on the domain. Natural
language dialog systems would not be well suited to an eCommerce application that manages
precise budgets, but are surprisingly good in coaching students on topics that involve verbal

reasoning.

Second, tutorial dialog in natural language is feasible when the shared knowledge
(common ground) between the tutor and learner is low to moderate rather than high. If the
common ground is high, then both speech participants (i.e., the computer and the learner) will be
expecting a higher level of precision of mutual understanding and therefore will have a higher



risk of failing to meet each other’s expectations. In contrast, it is entirely reasonable to build a
natural language dialog system when the computer and tutor do not track what each other knows
at a fine-grained level and when the computer produces dialog moves (e.g., questions, hints,
assertions, short responses) that advance the dialog to achieve the learning goals.

It is noteworthy that human tutors are not able to monitor the knowledge of students at a
fine-grained level because much of what students express is vague, underspecified, ambiguous,
fragmentary, and error-ridden (Fox, 1993; Shah, Evens, Michael, & Rovick, 2002; Graesser &
Person, 1994; Graesser, Person, & Magliano, 1995). It ordinarily would not be worthwhile to
dissect and correct each of these deficits because it is more worthwhile to help build new correct
knowledge (Sweller & Chandler, 1994). Tutors do have an approximate sense of what a student
knows and they do provide productive dialog moves that lead to significant learning gains in the
student (Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001; Cohen, Kulik, & Kulik, 1982;
Graesser et al., 1995). These considerations indeed motivated the design of AutoTutor
(Graesser, Person, Harter, & Tutoring Research Group (TRG), 2001; Graesser, VanlLehn, Rose,
Jordan & Harter, 2001; Graesser, Wiemer-Hastings, Wiemer-Hastings, Kreuz, & TRG, 1999) as
well as the current ATEC system. In essence, dialog can be useful when it advances the dialog
and learning agenda, even when the tutor does not fully understand a student. To use an
analogous dialog situation, a native speaker of English can often express utterances that help a
visitor from another country (with broken English), even though the visitor is only approximately

understood.

Third, tutorial dialog in natural language is feasible when the tutoring strategies follow
what most human tutors do rather than the strategies that are highly sophisticated. Most human
tutors anticipate particular correct answers (called expectations) and misconceptions when they
ask the learner’s questions and trace the learner’s reasoning. As the learner articulates the
answer or solves the problem, this content is constantly being compared with the expectations
and misconceptions; the tutor responds adaptively and appropriately when each expectation or
misconception is expressed. We refer to this tutoring mechanism as expectation and
misconception tailored (EMT) dialog (Graesser, Hu, & McNamara, in preparation). The EMT
dialog moves of most human tutors are not particularly sophisticated from the standpoint of ideal
tutoring strategies that have been proposed in the fields of education and artificial intelligence

(Graesser et al., 1995).

Graesser and colleagues (Graesser & Person, 1994; Graesser et al., 1995) videotaped over
100 hours of naturalistic tutoring, transcribed the data, classified the speech act utterances into
discourse categories, and analyzed the rate of particular discourse patterns. These analyses
revealed that human tutors rarely implement intelligent pedagogical techniques such as bona fide
Socratic tutoring strategies, modeling-scaffolding-fading, reciprocal teaching, frontier learning,
building on prerequisites, cascade learning, or diagnosis/remediation of deep misconceptions
(Collins, Brown, & Newman, 1989; Palincsar & Brown, 1984; Sleeman & Brown, 1982).
Instead, tutors tend to coach students in constructing explanations according to the EMT dialog
patterns. Fortunately, the EMT dialog strategy is substantially easier to implement
computationally than are the sophisticated tutoring strategies.




During the last decade, researchers have developed a half dozen intelligent tutoring
systems with dialog in natural language. Four of these are listed below.

1. AutoTutor and Why/AutoTutor (Graesser, Hu & McNamara, in preparation; Graesser,
Person et al., 2001; Graesser, Wiemer-Hastings et al., 1999). This system will be
described in the next section. It has been developed for introductory computer literacy
and Newtonian physics. These systems scaffold college students on applying higher
order cognitive strategies, explanations, and knowledge-based reasoning to particular
problems.

2. Why/Atlas (VanLehn et al., 2002). Students learn about conceptual physics by a coach
that helps build explanations of conceptual physics problems. It has modules with
syntactic parsers, a lexicon, semantic interpreters, symbolic reasoning modules, and finite
state machines to manage the dialog (called knowledge construction dialogs). It also uses
Bayesian networks, latent semantic analysis, and other statistical techniques in modules
that perform pattern recognition and comparison operations. Why/Atlas has been tested
in one study and has produced learning gains approximately the same as Why/AutoTutor
and as computer-mediated communication with expert physicists with extensive
experience in pedagogy serving as tutors.

3. Circsim Tutor (Freedman, 1999; Hume, Michael, Rovick, & Evens, 1996; Shah, Evens,
Michael, & Rovick, 2002). Medical students learn about the circulation system by
interacting in natural language. The computer tutor attempts to implement strategies of
an accomplished tutor with a medical degree. The system has a spelling checker, a
lexicon, a syntactic parser, rudimentary semantic analyzers, and a dialog planner. There
have been informal evaluations of learning gains, but no formal evaluation.

4. Pedagogical Agent for Collogen (PACO) (Rickel, Lesh, Rich, Sidner, & Gertner, 2002).
The PACO assists learners in interacting with mechanical equipment and completing
tasks by interacting in natural language. The PACO integrates Collagen, the generic
dialog planning system developed by Rich and Sidner (1998), with an existing intelligent
tutoring system called Virtual Interactive ITS Development Shell (VIVIDS). There have
been no evaluations of PACO on learning gains.

From the above four systems that have been evaluated, two noteworthy generalizations
can be made. The first generalization applies to dialog management. Finite state machines for
dialog management have provided an architecture that can be applied to produce working
systems (as in AutoTutor, Why/AutoTutor, and Why/Atlas). In contrast, there have been no full-
fledged dialog planners in working systems that perform well enough to be evaluated (as in
Circsim Tutor and PACO). Dialog planning is extremely difficult because it requires the precise
recognition of knowledge states (goals, intentions, beliefs, knowledge) and a closed system of
formal reasoning. Unfortunately, dialog contributions of learners are often too vague and
underspecified to afford precise recognition of knowledge states. The second generalization
addresses the representation of world knowledge. The LSA-based statistical representation of
world knowledge allows the researcher to very quickly (measured in hours or days) have some
world knowledge component up and running, whereas the symbolic representation of world
knowledge takes years or decades to develop. AutoTutor and Why/AutoTutor routinely
incorporates LSA in its knowledge representation so it is a tutoring system in which a new

subject matter can be quickly developed.



AutoTutor

AutoTutor is a dialog-based tutor developed by Graesser and colleagues at the University
of Memphis (Graesser, et al., in preparation; Graesser, Person et al., 2001; Graesser, Wiemer-
Hastings et al., 1999). AutoTutor asks questions or presents problems that require approximately
a paragraph of information (e.g., 3-7 sentences, or 50-100 words) to produce an ideal answer. of
course, it is possible to accommodate questions with answers that are longer or shorter; the
paragraph span is simply the length of answers that have been implemented in AutoTutor so far, in
an attempt to handle open-ended questions that invite qualitative reasoning in the answer.
Although an ideal answer is approximately 3-7 sentences in length, the initial answers to these
questions by learners are typically only 1-2 sentences in length. This is where tutorial dialog is
particularly helpful. AutoTutor engages the learner in a mixed initiative dialog that assists the
learner in the evolution of an improved answer that draws out more of the learner’s knowledge
that is relevant to the answer. The dialog between AutoTutor and the learner typically lasts 30-
100 turns (i.e., the learner expresses something, then the tutor, then the learner, and so on).

There is an important reason for using sentences as the basic metric in measuring content in
AutoTutor. One of the goals is to have subject matter experts create the content of question-
answer items in the curriculum script. The experts simply type in the question in English,
followed by sentences on the ideal answer, and other specifications of content. Most subject
matter experts are not accomplished experts in artificial intelligence or cognitive engineering so it
is unrealistic to have them compose structured code. Sentences are a familiar unit of analysis and
are reasonably self-contained packages of information.

AutoTutor produces several categories of dialog moves that facilitate covering information
that is anticipated by AutoTutor’s curriculum script. AutoTutor delivers its dialog moves via an
animated conversational agent (synthesized speech, facial expressions, gestures), whereas learners
enter their answers via keyboard. AutoTutor provides feedback to the learner (positive, neutral,
negative feedback), pumps the learner for more information (“What else”), prompits the learner to
fill in missing words, gives hints, fills in missing information with assertions, identifies and
corrects bad answers, answers learners’ questions, and summarizes answers. As the learner
expresses information over many turns, the information in the 3-7 sentences is eventually covered
and the question is answered. During the process of supplying the ideal answer, the learner
periodically articulates misconceptions and false assertions. If these misconceptions have been
anticipated in advance and incorporated into the program, AutoTutor provides the learner with
information to correct the misconceptions. Therefore, as the learner expresses information over the
turns, this information is compared to expectations and misconceptions, and AutoTutor formulates
its dialog moves in a fashion that is sensitive to the learner input. That is, AutoTutor implements
expectation and misconception tailored dialog (EMT dialog), which is known to be common in
human tutors. The design of AutoTutor was also inspired by:

1. The explanation-based constructivist theories of learning (Chi, deLeeuw, Chiu,
LaVancher, 1994; VanLehn, Jones, & Chi, 1992). Learning is deeper when the learner
must actively generate explanations, justifications, and functional procedures than when
merely given information to read.

2. Anderson’s cognitive tutors that adaptively respond to learner knowledge (Anderson,
Corbett, Koedinger, & Pelletier, 1995). The tutors give immediate feedback to learner’s




actions and guide the learner on what to do next in a fashion that is sensitive to what the
system believes the learner knows.

3. Previous empirical research that has documented the collaborative constructive activities
that routinely occur during human tutoring (Chi, Siler, Jeong, Yamauchi, & Hausmann,
2001; Fox, 1993; Graesser & Person, 1994; Graesser et al., 1995). After these
researchers analyzed videotaped or audiotaped tutoring sessions in detail, they discovered
patterns of dialog that frequently occur and compared the incidence of these patterns to
theoretical claims from pedagogical frameworks.

AutoTutor uses LSA for its conceptual pattern matching algorithm when evaluating
whether student input matches the expectations and misconceptions. The LSA is a high-
dimensional, statistical technique that, among other things, measures the conceptual similarity of
any two pieces of text, such as a word, sentence, paragraph, or lengthier document (Foltz,
Gilliam, & Kendall, 2000; Kintsch, Steinhart, Stahl & LSA Research Group, 2000; Kintsch,
1998, 2001; Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998). A cosine between
the LSA vector associated with expectation E (or misconception M) and the vector associated
with learner input (I) is calculated. An E or M is scored as covered if the match between E or M
and the learner’s text input I meets some threshold, which has varied between .40 and .65 in

previous instantiations of AutoTutor.

Suppose that there are four key expectations embedded within an ideal answer.
AutoTutor expects these answers to be covered in a complete answer and will direct the dialog in -
a fashion that finesses the students to articulate these expectations (through prompts and hints).
AutoTutor stays on topic by completing the sub-dialog that covers expectation E before starting a
sub-dialog on another expectation. For example, suppose an expectation (7he earth exerts a
gravitational force on the sun) needs to be articulated within the answer. The following family
of prompts is available to encourage the student to articulate particular content words in the

expectation:

The gravitational force of the earth is exerted onthe .
The sun has exerted on it the gravitational force of the .
What force is exerted between the sun and earth? .

The earth exerts on the sun a gravitational .

el

AutoTutor first considers everything the student expresses during conversation turns 1
through N to evaluate whether expectation E is covered. If the student has failed to articulate
one of the four content words (sun, earth, gravitational, force), AutoTutor selects the
corresponding prompt (1, 2, 3, and 4, respectively). One obvious alternative might be to simply
have AutoTutor assert the missing information, but that would be incompatible with the
pedagogical goal of encouraging the learner to actively construct knowledge, as discussed
earlier. If the student has made three assertions at a particular point in the dialog, then all
possible combinations of assertions X, Y, and Z would be considered in the matches [i.e., cosine
(vector E, vector )]: X, Y, Z, XY, XZ, YZ, XYZ. The maximum cosine match score is used to
assess whether expectation E is covered. If the match meets or exceeds threshold T, then
expectation E is covered. If the match is less than T, then AutoTutor selects the prompt (or hint)
that has the best chance of improving the match (that is, if the learner provides the correct answer



to the prompt). Only explicit statements by the learner are considered when determining whether
expectations are covered. As such, this approach is compatible with constructivist learning
theories that emphasize the importance of the learner generating the answer.

The conversation is finished for the question when all expectations are covered. In the
meantime, if the student articulates information that matches any misconception, the
misconception is corrected as a sub-dialog and then the conversation returns to finishing
coverage of the expectations. Again, the process of covering all expectations and correcting
misconceptions that arise normally requires a dialog of 30-100 turns (or 15-50 student turns).

The conversational interactions between AutoTutor and the student are lengthy because
of the pedagogical goal, expressed above, of getting the student to construct the explanation, as
opposed to merely having AutoTutor be an information delivery system. The pedagogical goals
could be entirely different in some learning environments. For example, an alternative
pedagogical goal would be to efficiently cover the material by minimizing interaction time and
number of turns. That could be easily implemented in AutoTutor by simply turning off the
prompt and hint dialog moves in the curriculum script and having AutoTutor delivering
assertions that fill in missing pieces of information. At the extreme, AutoTutor would simply
present the question-answer item and not solicit information from the student at all. However,
such a system would be a standard computer-based training system rather than an intelligent
tutoring system that adapts to the student’s performance. The design of the curriculum script
was sufficiently general to accommodate a diversity of pedagogical goals and conversational
styles that a designer wished to implement.

In addition to asking questions, AutoTutor attempts to handle questions posed by the
learner. However, somewhat surprisingly, students rarely ask questions in classrooms, human
tutoring sessions, or AutoTutor sessions (Graesser & Person, 1994; Graesser & Olde, 2003). The
rate of learner questions is 1 learner question per 6-7 hours in a classroom environment and 1 per
10 minutes in tutoring. Although it is pedagogically disappointing that learners ask so few
questions, the good news is that this aspect of human tutor interaction makes it easier to build a
dialog-based intelligent tutoring system such as AutoTutor. It is computationally straightforward
to compare learner input with computer expectations through pattern matching operations. It is
extremely difficult, if not impossible, to interpret any arbitrary learner question from scratch and
to construct a mental space that adequately captures what the learner has in mind. These claims
are widely acknowledged in the computational linguistics and natural language processing
communities. Therefore, what human tutors and learners do is compatible with what currently

can be handled computationally within AutoTutor.

A goal of the research was to fine-tune the LSA-based pattern matches between learner
input and AutoTutor’s expected input (see Hu, Cai, Graesser et al., 2003; Hu, Cai, Franceschetti
et al., 2003; Olde, Franceschetti, Karnavat, Graesser & TRG, 2002). The good news is that LSA
does a moderately impressive job of determining whether the information in learner essays
match particular expectations associated with an ideal answer. For example, in one recent study,
experts in physics or computer literacy were asked to make judgments concerning whether
particular expectations were covered within learner essays. A coverage score was computed as
the proportion of expectations in the learner essay that judges believed were covered, using
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either stringent or lenient criteria. Similarly, LSA was used to compute the proportion of
expectations covered, using varying thresholds of cosine values on whether information in the
learner essay matched each expectation. Correlations between the LSA scores and the judges’
coverage scores were approximately .50 for both conceptual physics (Olde, Franceschetti,
Karnavat, Graesser, & TRG, 2002) and computer literacy (Graesser, Wiemer-Hastings et al.,
2000). Correlations generally increase as the length of the text increases, yielding correlations as
high as .73 (Foltz et al., 2000). The LSA metrics also did a reasonable job tracking the coverage
of expectations and the identification of misconceptions during the course of AutoTutor’s tutorial

dialogs.

The question arises whether AutoTutor is successful in promoting learning gains.
Previous versions of AutoTutor have produced gains of .4 to 1.5 sigma depending on the
learning performance measure, the comparison condition (either pretest scores or a control
condition in which the learner reads the textbook for an equivalent amount of time as the tutoring
session), the subject matter, and the version of AutoTutor (Graesser, Jackson, Mathews, et al.,
2003; Graesser, Moreno, et al., 2003; Person, Graesser, Bautista, Mathews, & TRG, 2001).
These results place previous versions of AutoTutor somewhere between an unaccomplished
human tutor of .4 sigma to an intelligent tutoring system of 1 sigma. Moreover, one recent
evaluation of physics tutoring remarkably reported that the learning gains produced by
accomplished human tutors in computer-mediated communication were equivalent to the gains
produced by AutoTutor (Graesser, Jackson, Mathews, et al., 2003).

AutoTutor has many other components that are needed to manage a mixed initiative
dialog with the learner. AutoTutor attempts to handle any input that the learner types in, whether
it is grammatical or ungrammatical. This is possible in part because of the recent advances in
computational linguistics that have provided lexicons, corpora, syntactic parsers, shallow
semantic interpreters, and a repository of free automated modules. AutoTutor currently manages
a surprisingly smooth conversation with the student, even though it does not deeply analyze the
meaning of the student contributions, does not build a detailed common ground, and does not
have an intelligent symbolic planner. The dialog facilities of AutoTutor have been tuned to the
point where bystanders cannot accurately decide whether a particular dialog move was generated
by AutoTutor or a human tutor (Person, Graesser, & TRG, 2002). The next steps in the
AutoTutor enterprise include blending in deeper comprehension modules, dialog planners, and
pedagogical strategies, and determining the extent to which these sophisticated components

improve learning gains.
Instructional Agents in Intelligent Tutoring Systems

The canonical ITS architecture includes, at a minimum, the following three components:
(a) an expert module that contains a representation of the knowledge to be presented and a
standard for evaluating student performance, (b) a student module that represents the student’s
current understanding of the domain, and (c) an instructional module that contains pedagogical
strategies and guides the presentation of instructional material (Polson & Richardson, 1988;
Sleeman & Brown, 1982; Wenger, 1987). These three aspects of intelligence need not be
separate components. Current thinking is that the key to intelligent training is designing the
system to behave intelligently by providing adaptive instruction that is sensitive to an
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approximate diagnosis of the student’s knowledge structures or skills (Shute & Psotka, 1995).
The indeterminacy and complexity of many domains, including battlefield reasoning, preclude
the use of model tracing approaches to student modeling, which are only applicable to procedural
learning and reasoning in well-structured domains. Furthermore, recent pedagogical theories
have focused on collaborative learning, situated learning, deliberate practice, constructive
learning, and distributed interactive simulation, all of which call for modifications of the
traditional ITS paradigm and the creation of alternative interactive learning environments.

A different approach has been to use cognitive modeling technology to create a model of
an instructor that can be embedded in an interactive learning environment for the more complex,
indeterminate domains. These models, called instructional agents, embody the reasoning of a
human instructor and include all three aspects of tutoring intelligence in one model: domain
knowledge, diagnostic reasoning, and pedagogical reasoning. The difficulty of diagnosing
deficiencies in knowledge and skill or of selecting appropriate pedagogical strategies is not
diminished using instructional agents.

However, the problem becomes more tractable when we analyze the expertise of an
instructor using cognitive task analysis methods, and we create an executable model of the
tutorial knowledge that is applicable in the instructional domain. Cognitive modeling may
provide a more natural methodology for representing human expertise than other artificial
intelligence (AI) formalisms.

The associated cognitive task analysis provides a richer method for acquiring that
knowledge than other knowledge engineering techniques. CHI Systems has developed a
cognitive agent technology called iGEN (Zachary, Ryder, Ross & Weiland, 1992; Zachary, Le
Mentec, & Ryder, 1996) that can be used to create instructional agents. iGEN-based
instructional agents have been used successfully in other complex domains that preclude the use
of model tracing approaches to student modeling (Ryder, Santarelli, Scolaro, Hicinbothom, &
Zachary, 2000; Zachary, Santarelli, Lyons, Bergondy, & Johnston, 2001).

Integration of Component Technologies

The iGEN technology serves as the reasoning engine and core computational architecture
for ATEC, as described below. However, the instructional agent approach was modified for this
application to incorporate the pedagogical approach of AutoTutor and to integrate its language
processing mechanisms. Combining a system that models human thought and problem-solving
and a system that excels in conversational tutoring seems ideal.

As pointed out earlier, language processing mechanisms are particularly useful in
qualitative domains. Battle command reasoning can be considered qualitative rather than precise
for various reasons. First, officers moving into command positions understand the fundamentals
of command, but have difficulties with using all the principles across a range of situations.
Secondly, instead of learning what to think, officers are taught how to think. They will have to
apply fundamentals to command adaptively. Finally, one of the limitations of a commander
under stress is cognitive tunneling: the inability to consider all aspects of the situation.
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The next sections will describe how the various components have been implemented in
the ATEC tutoring system.

ATEC Functional Description and System Architecture

Development Approach

The ATEC Phase II development began with the integration of AutoTutor with the ATEC
interface and an initial iGEN instructional agent. There was a need for a software integration of
the technologies as well as a conceptual integration. In addition, the integrated system needed to
address the battlefield reasoning problem, which was somewhat different from those that

AutoTutor had addressed.

The overall development approach began with adapted AutoTutor components, then
migrated many of AutoTutor’s functions into iGEN, and ended up with the final product having
the controlling logic for the system within the iGEN instructional agent. As part of the
integration, it was necessary to analyze AutoTutor functions and components and to determine
what aspects to include and how to accomplish the integration. The rationale for these decisions
is discussed throughout this section of the report. The integrated system is described in the
subsection on Functional Architecture.

Pedagogical Approach

The ATEC system presents a battlefield situation and then initiates a dialog between a
virtual mentor (instructional agent) and a student as they collaboratively discuss the situation.
The virtual mentor poses questions, evaluates student responses, determines the sequence of
questions, and ultimately assesses performance on the basis of the specificity of questioning and
the depth of probing and hinting that is needed to adequately answer the questions.

Responses are not considered correct or incorrect, but rather starting points for a dialog
about the important considerations in the vignette. In fact, there are multiple reasonable ways to
approach the problem in any vignette, all leading to reasonable answers to a specific question.
AutoTutor has been applied to computer literacy and conceptual physics, both of which are
domains that require conceptual reasoning and that have one correct answer to each question or
problem to solve. Thus, the pedagogical approach from AutoTutor had to be adapted.

The ATEC attempts to replicate the coaching and scaffolding that human
instructors/mentors provide in the TLAC program. The ATEC is organized around the eight
themes in TLAC. For-each theme, there is a general question meant to start discussion of that
aspect of the problem. Associated with each general question, there are anticipated good
answers (called expectations) based on reasonable approaches to the problem posed. The virtual
mentor assesses the student’s response in relation to the possible good answers.

There is also a set of progressively more specific questions for the virtual mentor to ask

to prompt the student into thinking about any aspect of the theme not discussed in response to the
initial question. This approach is based on the AutoTutor curriculum script approach, but was
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modified to provide a mentoring style of dialog rather than the tutoring style previously used in
AutoTutor for teaching computer literacy or physics. For example, ATEC did not include very
specific pumps (e.g., “The mechanism in a computer that stores data between sessions is called
the ...”) as they are too leading for a mentoring dialog; or corrective splices that correct
misconceptions in bad answers, as that would imply an incorrect answer had been given.

User View

The ATEC is a web-based application that users can log onto from any computer with an
Internet connection and a browser (with Flash and Java). Upon entering the ATEC system, a
menu screen (Figure 1) is presented allowing the user to access instructions, view the Road to
War, choose a vignette for a training session, or end the training session.

The instructions provide an explanation of ATEC and TLAC and describe the process for
using the system. The Road to War button brings up a Flash movie containing the background

situating information for all the vignettes.

In order to focus on the design issues, we have used one vignette, Vignette 5, as our
example. When a vignette is selected, the main vignette interaction screen appears (Figure 2).
This is the main screen for viewing the vignettes, interacting with the tutor, and accessing
supplementary materials. The components of the main vignette interaction screen are described
below. The numbers correspond to the labels in Figure 2.

Figure 1. Menu screen.




Figure 2. Vignette interaction screen.

1. This is the speaker identification area, which displays a picture of the person speaking
and his position.

2. This is the main information display area. Flash movies of the Road to War and
Vignettes are displayed here. Supplementary information is also displayed in this area
(see Figure 3). There are four VCR-like controls associated with this box to allow the
user to control the presentation of the Road to War and Vignette: PLAY, PAUSE, RE-

START, and END.

e PLAY and PAUSE are used together to pause the presentation at any time and to
resume playing it from where it was paused.
RE-START re-starts the presentation from the beginning.
END jumps to the last segment of the presentation.

3. This area is the virtual mentor interaction area. All dialog is conducted using this area.
The top box contains the running dialog between the mentor and the user. Mentor dialog
comes up here. The bottom box is for user input. Once the user is satisfied with his or
her input and presses the ENTER key on the keyboard, the input becomes part of the

. running dialog in the top box.
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4. This control area provides buttons for controlling the session and accessing
supplementary information. There are six buttons: EIGHT THEMES, ORDERS, ROAD

TO WAR, VIEW MAP, DOWNLOAD DOCS, and EXIT.

e EIGHT THEMES brings up the eight themes that have been indicated by the Army
Research Institute as representing necessary components of expert patterns of

battlefield thinking.
e ORDERS brings up a list of the relevant orders that can be viewed. Selection of an

order causes the order to appear in a new window.
e ROAD TO WAR allows the user to review the Road to War while responding to

Mentor questions.
VIEW MAP returns the vignette map display after viewing any other information.
DOWNLOAD DOCS provides a list of documents (i.e., field manuals) available for
downloading. Selection of a document causes it to appear in a new window.

e EXIT exits the current vignette session and returns to the menu screen.
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Figure 3. Supplementary information display.

Functional Architecture

Figure 4 shows the functional architecture of the ATEC system, indicating which
components are handled by AutoTutor components, iGEN components, or Flash/Java
components. The user interface components are implemented as Flash and Java. The language
processor (including syntactic parser and speech act classifier) and statistical comparison
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components are derivatives of the AutoTutor system, whereas iGEN handles the domain
knowledge and reasoning facilities associated with each vignette, the student model, and
performance assessment components. In addition, the curriculum script and dialog management
processes of AutoTutor have been integrated into the iGEN virtual mentor.

The Language Processor parses the student input, classifies it into speech act categories,
and passes a parsed and tagged representation of the student input to the Student Input
Evaluation process within the Virtual Mentor. The Virtual Mentor (instructional agent): (a)
controls and maintains the list of questions that should be asked (functionally a Curriculum
Script), (b) evaluates what knowledge the student has demonstrated (Student Input Evaluation),
and (c) maintains a representation of the student’s discussion of vignette aspects (Student
Model). Frozen expressions (e.g., “I don’t understand,” “Could you repeat that?”) are handled
directly by the Dialog Management processes, while contributions and questions are handled by
the Student Input Evaluation processes. The system is designed to incorporate a hybrid approach
for evaluating student inputs. One type of evaluation uses statistical techniques (Statistical
Comparison) for comparing the student input to the expected good answer(s). The second
method for evaluating student input involves deep reasoning based on domain knowledge.
ATEC does not currently have any deep reasoning logic implemented.

k) ’ATE%@@”{ Student
_ATEC (Interface) Server -
A
Student Inputs ¢ iGEN
Language Mentor Outputs AutoTutor []
Processor Flash/Java™]
Conributioleuestio Frozen.Expression

Domain

Student Input [+ { Management

Statistical
Comparison

Figure 4. Functional architecture.
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Dialog Management processes handle the microstructure of the tutorial dialog by specifying
discourse markers, dialog moves, and responses to frozen expressions, as well as the logic for
constructing dialog moves that are responsive to the student input and its evaluation.

Virtual Mentor

The Virtual Mentor (VM) provides the instructional reasoning of ATEC. As described
above, it controls and maintains the list of questions that should be asked, evaluates what
knowledge the student has demonstrated, and maintains a representation of the student’s
discussion of vignette aspects. It is implemented as an iGEN model, using extensions to iGEN
that were developed to handle dialog (see section on iGEN Enhancements for Dialog and
Performance Assessment below). Functionally, it incorporates the Curriculum Script and Dialog

Management of AutoTutor as part of its instructional reasoning.

The main components of an iGEN model are: a problem representation blackboard
containing declarative knowledge about the situation (including a metacognitive blackboard
representing about the status of cognitive processing), procedural knowledge represented as
tasks, and mechanisms for sensing the external environment (perceptual demons) and acting on it
(actions). A communication shell allows the model to obtain perceptual inputs from the
environment (in this case, student inputs parsed and classified into speech act categories), define
actions on the external environment (in this case, mentor outputs), and invoke functions from
external modules as part of its task procedures (in this case, the statistical comparator).

The VM contains tasks for asking questions related to each TLAC theme. Each task
includes one or more dialog chunks—a hierarchy of questions and associated expectations
(possible good answer aspects). Each dialog chunk has a leading question, any number of nested
subquestions (more specific questions) and expected good answers (expectations) associated
with questions. It is also associated with a theme. Whenever the VM asks a question and the
student provides a response (contribution), the VM compares the contribution to all expectations
to the question asked and to all subquestions. Any expectations that are satisfied are marked.
Subquestions are not asked if their expectations have already been satisfied. Both the questions
and the associated expectations are combined conjunctively or disjunctively, resulting in various
types of AND/OR trees. This approach allowed the VM to use the mentoring style of TLAC,
starting with general questions and only asking specific ones for topics the student did not
discuss. These tasks comprise the Curriculum Script component of the VM.

In addition to the tasks for asking questions, there were tasks for managing local aspects
of the dialog, including special speech acts (questions and frozen expressions), acknowledging
good answers, and providing other discourse markers as needed to make the conversation smooth
(see Louwerse & Mitchell, 2003; Louwerse, Graesser, Olney, & TRG, 2002). Discourse markers
are defined and stored in a specific level of the blackboard called “Markers” which contains one
sub-level for each type of marker. The tasks using the markers randomly select one marker from
the needed category to make the conversation less rigid. These tasks along with the dialog
processing mechanisms built into iGEN comprise the Dialog Management components of the

VM.
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The VM starts the execution of its highest priority tasks (a task with questions about one
theme). The execution of the first dialog chunk sends the text of the leading question to the
dialog interface window, and prepares a set of expected answers. The execution of the task is
put in a suspension mode until the dialog interface window receives an answer from the user.
When an answer is received, it is parsed and classified by the speech act classifier, which may
also identify a set of key nouns that can be extracted from the answer (to aid in question
answering). The answer is then posted in the metacognitive blackboard, along with its
classification and attached nouns. If the classification corresponds to a special speech act, the
task for handling special speech acts is triggered. If the speech act is not special and satisfies at
least one of the expectations, then a task is triggered and executed which provides dialog
transition markers for acknowledging success. This task initiates an acknowledgment marker
(e.g., “ok”™), and if more answers to the same question are still expected, it also initiates a next
marker (e.g., “anything else”). Once the interrupting task (if ever triggered) is completed, the
normal execution of the original task continues. Depending on the status of the question that was
previously asked, the execution may continue by asking subquestions to this question or continue
the normal execution of the task. Once a task is completed, the task with the next priority begins
(usually a task related to another theme).

The task for handling special speech acts has sub-goals for answering definition and
yes/no questions, avoiding questions it cannot answer (e.g., saying “That is a good question.
What do you think?”), and responding to frozen expressions indicating lack of knowledge or lack
of understanding.

Dialog Management and Curriculum Script

Dialog management can be viewed from the standpoint of macrostructure and
microstructure. Macrostructure consists of major chunks of lessons to be covered and the points
to be covered within each lesson. Microstructure consists of ATEC’s dialog moves and micro- -
adaptation to the student during the course covering each point. The curriculum script plays the
primary role in managing the macrostructure whereas a more complex dialog management
mechanism is needed for handling microstructure.

The analyses conducted to determine the content for the curriculum script at the
macrostructure level are described in the Domain/Vignette Analyses subsection of the Analyses
Conducted section of this report. Although the topics included those related to multiple ways to
approach the problem presents, there was no guarantee that all possible approaches any student
might want to discuss were included. The development of the microstructure (i.e., specific
subquestions) was determined by an analytical process of partitioning the content into smaller
units for subquestions.

As discussed previously, the curriculum script consists of a hierarchical organization of
themes, general and specific questions associated with themes, and expectations associated with
each question. This can be expressed in the following simple rewrite rules, with * signifying
there can be one or more of the designated constituents.
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Curriculum Script = Theme, + Theme; + ... Themes
Theme, > Theme-description + Question-answer-structure*
Theme-description = <verbal description that summarizes the theme>
Question-answer-structure - General-question + General-expectation +
Specific-subquestion; + Specific-sub-expectation;
Specific-subquestion; = <verbal articulation of a question>
Specific-subquestion; = Specific-subquestion; + Specific-subquestion
Specific-subexpectation; > <verbal articulation of a subexpectation>
Specific-subexpectation; = Specific-subexpectation; + Specific-subexpectation
General-question - <verbal articulation of a general question>
General-expectation; = <verbal articulation of a general expectation>

The dialog macrostructure is organized around the eight TLAC themes. The themes are
currently introduced in a fixed order. The questions within a theme are asked in an ordering that
goes from general to specific following the nested structure; if the student articulates an
expectation at a higher level, then all nested subordinate questions need not be asked. If the
content of the user contributions has a very low match to the expectations, then the same
sequence of questions would be produced for a theme, following a progressive deepening
algorithm. If the content of the user contributions has a high match to the expectations, then
many of the questions can be deleted so there is fluctuation in questions asked, depending on
what the user articulates.

For example, a portion of the curriculum script dealing with the theme “Mission’ is
shown in Figure 5 in text format extracted from the iGEN mentor model. There is one leading
question, Q2, with four subquestions, some of which have their own subquestions. The
associated expectations have corresponding numbers beginning with ‘E’ and are either
disjunctive or conjunctive combinations. For a disjunctive set of expectations, only one must be
satisfied for the question to be satisfied; while for a conjunctive set, all must be satisfied.

The dialog microstructure attempts to micro-adapt to a variety of potential student
contributions during the process of attempting to have expectations covered. The ATEC handles
some questions that users ask. In particular, it can potentially answer definitional questions
(What does X mean?) and verification questions (Is X true?). Definitional questions are
answered by consulting a glossary. If X is an entry in the glossary, then the meaning of X is
produced and then ATEC returns to the same point in the dialog prior to the user question. IfX
is not an entry in the glossary, then ATEC announces that it cannot answer the question and goes
on in the dialog as it normally would. The ATEC also responds appropriately to a variety of
frozen expressions that users often type in.

For example, a metacognitive expression is “I don’t follow” whereas a
metacommunicative expression is “Could you say that again?” The ATEC attempts to respond
appropriately to a large set of alternative speech acts that the user might enter. ATEC also adds
dialog markers to its responses to improve the smoothness of the dialog. For example, it
acknowledges user input with an Acknowledgement Marker chosen randomly from a set
including ‘Alright,” ‘Good,” ‘Okay,” ‘Right” prior to proceeding with another question. There
are also sets of markers for requesting further information when a response partially satisfies a




question, markers for responding when the user input is not relevant to the question, among other
things. An example of dialog corresponding to the curriculum script chunk in Figure 5 is shown
in Figure 6. Appendix B shows the annotated log corresponding to this example dialog.

Language Processing Components

Most of the language processing components in ATEC are based on those used in
AutoTutor. They include speech act classifier, syntactic parsers, and statistical comparison of
text strings for evaluating conceptual similarity. Each is discussed in turn.

Speech Act Classifier. An important function in ATEC is that of speech act
classification. As with AutoTutor, ATEC needs to determine student intent in order to flexibly
respond to the student. A speaker who asks “can you repeat this” would probably not like to
have a “yes” or “no” as a response, but would in fact like to have the previous utterance repeated.

The ATEC uses speech act classification in order to determine the student’s intentions.
This classification system is based upon the AutoTutor classifier that identifies 20 illocutionary
categories. These categories range from assertions to metacommunicative and metacognitive
expressions like “Can you repeat that?”” and “I don’t <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>